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The most interesting events often occur very infrequently



The most intense (and damaging) tropical cy-
clones occur about once a decade, but processes
(e.g. gravity waves) on the timescale of seconds to
minutes must be resolved in numerical integration
of weather models.

Major blackouts not (counting those due to major
storms) are extremely rare in the US. The last one
occurred in 2003. Within minutes millions (even-
tually 55 million in the US and Canada) were af-
fected.

Disassociation of the insulin dimer has important
therapeutic implications. It occurs roughly on the
microsecond to millescond timescale. That’s up to
12 orders of magnitude longer than the time scale
of bond vibrations (10−15s)



Three common approaches to interrogating long timescale processes:

1. Direct simulation: Find (or build) a really
fast computer (Anton2 shown here) and
integrate for as long as you can.

2. Coarse graining: Build a cheaper but less
accurate model that you can run to very long
timescales. (image from the Voth group)

3. Rare event simulation: Try to “trick” the
model into undergoing the event of interest
quickly while maintaining the ability to
estimate unbiased statistics.



However you generate the data...

It needs to be processed it for understanding of the long timescale
phenomena

In this talk I:

1. Report on our analysis of a popular dynamic spectral estimation
approach that approximates the slowest decorrelating features of the
system.

2. Describe a family of methods that we have developed that uses short
trajectories to compute statistics describing a specified long timescale
event.
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The Variational Approach to Conformational Dynamics
Rob Webber, Erik Thiede, Douglas Dow, Aaron Dinner

VAC estimates eigenvalues and eigenspaces of the transition operator T τ

with action

T τ f (x) = E [f (Xτ ) |X0 = x ]

VAC assumes that Xt has unique ergodic probability measure µ and that
T τ : L2(µ)→ L2(µ) is self-adjoint.

Our analysis assumes quasi-compactness:

T τ =
r∑

i=1

e−σiτproj[ηi ] +Rτ with ‖Rτ‖2 ≤ e−σr+1τ

where 1 = e−σ1τ > e−σ2τ ≥ · · · ≥ e−σr+1τ and where η1, η2, . . . , ηr are
eigenfunctions. η1 ≡ 1.



VAC estimates spani≤k{ηi}
the most slowly decorrelating functions of the system.

If η belongs to the linear span of η2, . . . , ηk , then

corrµ [η (X0) , η (Xτ )] =
〈η, T τη〉µ
〈η, η〉µ

≥ e−σkτ .

If u is orthogonal to η1, . . . , ηk then,

corrµ [u (X0) , u (Xτ )] =
〈u, T τu〉µ
〈u, u〉µ

≤ e−σk+1τ .



VAC workflow...

1. Generate samples of X0 from µ and then Xτ given X0.

2. Choose a set of basis functions φ1, φ2, . . . , φn.

3. Use samples to build estimates

Ĉij (0) ≈ Cij (0) = 〈φi , φj〉µ = E [φi (X0)φj (X0)]

Ĉij (τ) ≈ Cij (τ) = 〈φi , T τφj〉µ = E [φi (X0)φj (Xτ )]

4. Solve for the eigenpairs (λ̂τ
i , v̂

i ) of Ĉ(0)
−1

Ĉ(τ).

5. Return approximate eigenfunctions γ̂τ
i =

∑
j v̂ i

j φj .

Most common variants:

Markov State Models (MSM)s: choose a basis of indicator functions on a
partition of space (usually found by clustering the data).

Time-lagged Independent Component Analysis (TICA): choose the
coordinate axes as a basis.
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Trp cage folding

A well studied fast folding mini-protein.
This study used a long trajectory with be-
tween 12 and 31 folding/unfolding events
generated on Anton. We’ll see this ex-
ample again later.

Sidky et al. 2019



When should we trust VAC?

We divide the VAC error into two contributions:

1. Approximation error: If Ĉ = C then VAC approximate eigenfunctions
are γτ

i =
∑

j v i
j φj where (λj , v j ) are eigenpairs of C(0)−1C(τ). How big is

distF
(
spani≤k{γ

τ
i }, spani≤k{ηi}

)
?

2. Estimation error: In practice we use sampled data to build the estimate
Ĉ of C. How big is

distF
(
spani≤k{γ̂

τ
i }, spani≤k{γ

τ
i }
)
?

We use the projection distance distF (U ,W) =
∥∥proj

[
W⊥

]
proj [U ]

∥∥
F between

subspaces of L2(µ).



Approximation error (Ĉ = C)

Natural to apply existing bounds for Rayleigh-Ritz method.

Let Φ = spani≤n{φi} and assume 1 ∈ Φ. Then

1 ≤
dist2

F
(
spani≤k{γ

τ
i }, spani≤k{ηi}

)
dist2

F

(
spani≤k{ηi},Φ

) ≤ 1 +
‖proj[Φ⊥]T τproj[Φ]‖2

2

|e−σkτ − λτ
k+1|2

provided that e−σkτ > λτ
k+1. As long as σk < σk+1

spani≤k{γ
τ
i } → spani≤k{ηi} as projΦ[ηi ]→ ηi for i ≤ k

RR bounds used to prove λτ
i converge in [Djurdjevac, Sarich, and Schütte (2012)].



But what happens when we increase τ?

1d Ornstein-Uhlenbeck process with MSM (indicator) basis. Approximation error in span{η1, η2, η3}.

We need a more detailed approximation error bound.
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Approximation error dependence on τ

Going beyond the Rayleigh-Ritz bounds we prove:

Provided that σi is isolated,

λτ
i

e−σiτ
→ ci as τ →∞

where ci is independent of τ .

As long as σk < σk+1

spani≤k{γ
τ
i } → proj[Φ]spani≤k{ηi} as τ →∞

and convergence is exponentially fast.

Provided that e−σk+1τ < λτ
k

dist2
F
(
spani≤k{γ

τ
i }, spani≤k{ηi}

)
dist2

F

(
spani≤k{ηi},Φ

) ≤ 1 +
1
4

∣∣∣∣ e−σk+1τ

λτ
k − e−σk+1τ

∣∣∣∣2 .



The new bound is sharp for large τ

1d Ornstein-Uhlenbeck process with MSM (indicator) basis. Approximation error in span{η1, η2, η3}.

Approximation error gets better (not worse) as τ increases.



A precise asymptotic formula for estimation error

The estimation error can be expressed as

distF
(
spani≤k γ̂

τ
i , spani≤kγ

τ
i
)2

=
n∑

i=k+1

k∑
j=1

∣∣∣∣∣∣
v i (τ)T

[
Ĉ (τ)− λτ

j Ĉ (0)
]

v j (τ)

λτ
i − λτ

j

∣∣∣∣∣∣
2

(1 + o (1))

in the limit as Ĉ (τ)→ C (τ) and Ĉ (0)→ C (0).

Estimation error is small when Ĉ is close to C.

But expect estimation error to be big when λτ
k − λτ

k+1 is small.



1d Ornstein-Uhlenbeck process with MSM (indicator) basis. Approximation error in span{η1, η2, η3}.
Trial 1: n = 20, trajectory length = 10000.
Trial 2: n = 50, trajectory length = 500

As τ increases approximation error decreases, but estimation error increases.



VAC summary

I New convergence bounds for VAC eigenfunctions.

I New understanding of the role of lag time.

I New diagnostic tools to help choose lag time.



Dynamic Galerkin Approximation (DGA)
Erik Thiede, John Strahan, Dimitrios Giannakis, Aaron Dinner

The truely longest timescale pocesses are often physically irrelevant

If we have a specific event in mind we should compute quantities specific to
that event.

E.g. to predict the event that we reach Xt ∈ B before Xt ∈ A starting from
X0 = x we should compute

q+(x) = P(TB < TA |X0 = x)

the “committor function.” (TA is the first time Xt ∈ A)



DGA computes conditional expectations

We’ll want to incorporate a domain D:

T τ f (x) = E [f (Xτ∧T ) |X0 = x ]

where T is the first time Xt exits D.

DGA estimates functions of the form:

u(x) = E
[
g(XT ) +

∫ T

0
h(Xs)ds

∣∣∣∣X0 = x
]

E.g. for u = q+ plug in D = A ∪ B, h = 0, and g(x) =

{
1, x ∈ ∂B
0, x ∈ ∂A

Elaborations of the basic setup including e.g. a potential term and time dependence
are straightforward (in principle)



DGA relies on the Feynman-Kac relation

u − T τu =

∫ τ

0
T s[h1D]ds on D and u = g on ∂D

to avoid generating long trajectories.

If u = ψ + w for a “guess” ψ satisfying the BCs and

rτ = T τψ − ψ +

∫ τ

0
T s[h1D]ds

then we can solve

w − T τw = rτ on D and w = 0 on ∂D

for w .



DGA workflow...

1. Generate samples of X0 ∈ D from µ and then Xτ∧T given X0.

2. Choose a guess function ψ satisfying the BCs.

3. Choose a set of basis functions φ1, φ2, . . . , φn satisfying homogenous
BCs.

4. Use samples to build estimates

Ĉij (0) ≈ Cij (0) = 〈φi , φj〉µ = E [φi (X0)φj (X0)]

Ĉij (τ) ≈ Cij (τ) = 〈φi , T τφj〉µ = E [φi (X0)φj (Xτ∧T )]

b̂i (τ) ≈ bi (τ) = 〈φi , rτ 〉µ

= E
[
φi (X0)

(
ψ(Xτ∧T )− ψ(X0) +

∫ τ∧T

0
h(Xs)ds

)]
5. Solve the linear system −(Ĉ(τ)− Ĉ(0))v̂ = b̂.

6. Return approximate conditional expectation ûτ = ψ +
∑

j v̂jφj .

µ does not have to be the stationary measure.

Similar steps allow solution of equations involving the adjoint of T τ .



Back to Trp cage folding

To evaluate DGA (and other methods) we produced a large database of
samples of (X0,Xτ ).

We choose µ so that its
marginal distribution in 2
variables is approximately
uniform to make sure those
variables are “well sampled.”

Our data set contains only short (17.5 nanosecond) trajectory fragments and
zero folding events.

Sum of our trajectories is about 15.5 microseconds compared to about 208
for the Anton data set.



Validating the DGA stationary distribution

Left: DGA free energy Right: REUS free energy

The change of measure ρ from the sampling measure µ to the stationary
measure π is available by solving an equation involving the µ-adjoint of T τ :

(T τ )†µρ = ρ



A

B

Trp cage committor

q+(x) = P(Tfolds < Tunfolds |X0 = x)

from DGA with different τ .

Transition Path Theory [E and Vanden-Eijnden 2010] ex-
plains how q+ and additional quantities like
the stationary distribution π and the back-
ward committor

q−(x) = P(XT− ∈ A |X0 = x)

(T− < 0 is the last time Xt was in A∪B) can
be combined to characterize key properties
of the steady state A to B transition.

DGA can be used to compute all of the nec-
essary quantities



DGA+TPT

JAB is a probability
current of trajectories
traversing from A to B.

RAB =

∫
C

JAB · nCdσC

is the number of transi-
tions from A to B per unit
time.

A

B

We see strong dependence on lag
time and basis choice when we
compute the forward rate from A to
B

kAB =
RAB∫

q−(x)π(dx)



Full circle

Left: DGA committor Right: Top TICA eigenvector



Summary and future directions

We’ve provided a much more complete understanding of the error
properties of VAC and specifically how they depend on the lag time τ .

Repurposing the basic components of VAC we’ve introduced DGA, a
family of estimators of conditional expectations specific to the event of
interest.

We’ve produced a large data set of short molecular dynamics trajectories
for the trp cage mini-protein to benchmark DGA performance.

Using our analysis of VAC as a roadmap we will study DGA’s error
properties.

We will continue development of DGA, e.g. by incorporating more
flexible solution representation.


